MetaFork: the parametric CUDA code generator

Xiaohui Chen Marc Moreno Maza Ning Xie

Department of Computer Science
University of Western Ontario, Canada

February 11, 2016

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator

Overview (1/2)

» The MetaFork-to-CUDA code generator allows the generation of kernels
depending on one parameter (or several parameters, in certain cases).

» Typically, these parameters specify thread-block dimension sizes
» The input of our code generator is a meta_schedule statement (from the

MetaFork language) as defined in
http://dl.acm.org/citation.cfm?id=2886456.

» This code MetaFork-to-CUDA code generator modifies and extends the PPCG
code generator whose original code is available at
https://www.openhub.net/p/ppcg.

» To be precise, our MetaFork-to-CUDA code generator is based on the version
0.04 of PPCG.

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 2 /10

http://dl.acm.org/citation.cfm?id=2886456
https://www.openhub.net/p/ppcg

Overview (2/2)

» The code generation follows two algorithms, depending on whether one
intends to use shared memory or not in the kernel code.

» In the sequel, we refer to these algorithms as the shared memory and global
memory modes of the code generator.

» These two algorithms are available to the user as two different targets of the
Makefile for compiling our code generator, see the instructions and
examples on the htttp://www.metafork.org web site.

» The remaining slides explain the syntax and constraints of the input
meta_schedule statement.

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 3 /10

htttp://www.metafork.org

meta_schedule statement

meta_schedule { ... }
» It indicates its body will be launched to hardware accelerators, i.e. NVIDIA
GPUs.

» It also transfers the data from CPU to GPU before launching kernels, and
transfers the data back from GPU to CPU after executing kernels.

» Note that data transfer between CPU and GPU is automatically detected by
this statement.
Supported statements within its body: a sequence of nested for loops

» Each nested for loops consist of parallel for loops (only 2 or 4) and/or
serial for loops, and will be translated into a kernel call.

» In the case of parallel for loops, it is identified with the 'meta_for’
keyword (see next slide).

4/ 10

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016

meta_for statem

meta_for (initialize; condition; increment) { ... }
» initialize: O
» condition: < (a variable)
» increment: ++ or += 1

» Example: meta_for (int i = 0; i < upper_bound; i++) { ... }

The upper bound in the condition indicates either the number of threads per
thread-block or the number of thread-blocks per kernel.

» Thus, for launching a one-dimension kernel, it requires one outer meta_for
loop specifying the grid size and one inner meta_for loop specifying the
block size.

» For a two-dimension kernel, two (immediately) consecutive outer meta_for
loops are used to specify the grid sizes, and two (immediately) consecutive
inner meta_for loops are used to specify the block sizes. Moreover, the
iterators in the first and second outer (resp. inner) meta_for loops
correspond to blockIdx.y and blockIdx.x (resp. threadIdx.y and
threadIdx.x), respectively, in the generated kernel code.

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 5/ 10

meta_schedule example

meta_schedule {
// only for loops are supported here
meta_for (int i = 0; i < gridDim.x; i++)
// only for loops are supported here
meta_for (int j = O0; j < blockDim.x; j++) {
... // nested for-loop body
}

// only for loops are supported here
meta_for (int u = 0; u < gridDim.y; ut++)
meta_for (int i = 0; i < gridDim.x; i++)
// only for loops are supported here
meta_for (int v = 0; v < blockDim.y; v++)
meta_for (int j = 0; j < blockDim.x; j++) {
// nested for-loop body
}

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 6 /10

Constraints on the input meta_schedule statement

Constraints on serial for loops

for (initialize; condition; increment) { ... }
» condition: the upper or lower bound is a linear expression.

» increment: it is increased or decreased by a constant

Constraints in the global memory mode

array[expression] or array[expression] [expression]

» expression: one can only use linear expressions as the indices of 1D or 2D
arrays.

» However, one can hide non-linear expressions by using a separate statement.
For instance, int p = i * B + j * s + k; array[p] =
Note that non-linear expressions cannot be analyzed by PPCG, such that
whether array [p] is reused or coalesced accessed is unknown to PPCG.

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator

Constraints in the shared memory mode (1/2)

array [expression] or array[expression] [expression]

» expression: due to the lack of analysis of non-linear expressions, we make
the following assumptions.

> If expression is a linear expression, all its variables must refer to the variable
counters in the serial for loops of the current loop nest.
In this case, we rely on PPCG to analyze the access patterns of the
corresponding array.
> If expression contains one and only one non-linear term, that is, one variable
multiplying by another, say i * B, then one variable must refer to the current
block id and the other must refer to corresponding block size.
One shall hide this non-linear expression by using a separate statement, while
this statement shall add a third variable referring to the thread id. For
instance, int p = i * B + j; arraylp] =
Moreover, adding a constant to the above format of the index of arrayl[] is
supported, say array[p] = array[p+1].
> For a 2D array, the first (resp. second) expression refers to the first (resp.
second) dimension of grid and blocks, defined by the first (resp. second) outer
and inner meta_for loops, respectively.

> No other forms of non-linear expressions are accepted in expression.

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 8 /10

Constraints in the shared memory mode (2/2)

In the shared memory mode, not all arrays occurring in the source MetaFork code
will necessarily have shared memory counterparts in the generated CUDA code. In
fact, in the addition to the syntax constraints described before, one of the
following conditions must also hold:

» If array[] (resp. array[][]) is written more than once and threads access
it in a coalesced fashion, then a shared memory counterpart of array[]
(resp. array[][1) will be generated.

» If array[] (resp. array[][]) is read and threads access it in a coalesced
fashion, then a shared memory counterpart of array[] (resp. array[][])
will be generated.

When none of those conditions is satisfied, them shared memory counterpart of
array[] (resp. array[][]) is not generated.

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 9 /10

How to use the global memory and shared memory modes

» Note that, by default, the compilation of MetaFork code, with our extended
version of PPCG, uses global memory only. This mode is compiled by running
make) at the root of the source tree of PPCG.

» To enable the use of shared memory, one should compile the code generator
by issuing make mem=mlocal.

u}
8
I
i
it

Xiaohui Chen, Marc Moreno Maza, Ning Xie (Departn MetaFork: the parametric CUDA code generator February 11, 2016 10 / 10

